xhyu


Xiaohui Yu

Photo of Xiaohui Yu

School of Information Technology

Professor
Graduate Program Director

Office: 3050 Victor Phillip Dahdaleh Building (DB)
(Formerly known as Technology Enhanced
Learning Building)
Phone: 416-736-2100 Ext:  33887
Email: xhyu@yorku.ca
Primary website: Personal Website
Secondary website: Google Scholar Profile

Media Requests Welcome
Accepting New Graduate Students


I am a Professor and the Graduate Program Director in the School of Information Technology, York University. I received my BSc degree from Nanjing University, China, MPhil from the Chinese University of Hong Kong, and PhD from the University of Toronto. I am affiliated with the graduate programs in Information Systems & Technology, Electrical Engineering & Computer Science, and Mathematics & Statistics at York University.

More...

My current research interests lie primarily at the intersection of data management and machine learning (ML), including designing next-generation ML-based database components for more efficient query processing, as well as developing new algorithms and systems for large-scale ML. I am also interested in managing and analyzing spatio-temporal data arising from a variety of contexts, such as intelligent transporation systems, location-based services, and social networks. I am grateful for the generous support from NSERC, BRAIN Alliance, and leading industry partners. Our research results have been published in top database and data mining venues, such as SIGMOD, VLDB, ICDE, and TKDE.

Degrees

PhD, University of Toronto
MPhil, Chinese University of Hong Kong
BSc, Nanjing University, China

Research Interests

Information Technologies , Big data management and analytics, Database systems, Machine learning
  • Dean's Award for Excellence in Research - 2009
  • ACM CIKM Service Award - 2014

Current Research Projects

Structured Video Query Processing with Spatiotemporal Constraints

    Summary:

    Fueled by the prevalence of capturing devices such as smartphones and cameras, we have witnessed an explosion of video data over recent decades. According to Cisco, video is expected to make up 82% of Internet traffic by 2022, with approximately 120TB of video data crossing the Internet per second. Such videos contain a wealth of information to be tapped to benefit our productivity, safety, and quality of life. However, they are heavily under-utilized due to the limitations posed by our current way of querying and analyzing videos.

    On the other hand, the vast advances in Deep Learning (DL) in recent years have revolutionized numerous applications of major practical significance, including computer vision tasks such as object detection and object tracking. Integrating real-world applications with DL algorithms and models has become possible; understanding object types (e.g., person, car) and their locations in video frames is within reach by the application of specialized DL models. However, most existing video analytics solutions are purposebuilt and target specific applications; assembling the technical expertise to build and maintain the required
    infrastructure and platform for video analytics that works across applications is still highly challenging, both in research and practice.

    The proposed research program aims to address these challenges by developing solutions that bridge the gap between the need for powerful video analytics and the capability of specific DL models. The longterm objective of the research program is to develop the frameworks, models, algorithms, and systems for general-purpose structured video processing and analytics to unleash (through query processing) the vast potential of video data. As spatiotemporal information contained in videos is key to the processing of queries, the short-term objective is to develop spatiotemporal data structures, algorithms, and models for the processing of structured queries over video data. Advances will be made to address the following research questions: (1) how to retrieve clips from large video repositories with constraints on when and how objects appear; (2) how to quantitatively represent and store the evolving spatial relationships among a group of objects and perform efficient and accurate query processing over such relationships; and (3) how to re-identify the same objects across video clips based on their spatiotemporal association and visual similarities to support cross-video query processing.

    The proposed research will help lay the foundation towards building a general-purpose video analytics system that is highly scalable and capable of performing fine-grained spatiotemporal pattern matching. It will help organizations and individual users uncover valuable information from videos and enable numerous applications in a wide variety of domains, such as video content creation, law enforcement, retail traffic analysis, and autonomous driving.

    See more
    Role: PI

    Start Date:
      Month: May   Year: 2022

    End Date:
      Month: Apr   Year: 2027

    Funders:
    NSERC

    See more
    Funders:
    Minor Research Grant (York University)

    See more
    Funders:
    ATK Fellowship (York University)

    See more
    Funders:
    Minor Research Grant (York University)
Managing and Mining Urban Spatio-Temporal Data

    Summary:

    The wide-spread use of smart phones, sensors and other IoT devices in cities world-wide has given rise to a huge volume of urban spatio-temporal data, which often present themselves as high-velocity continuous streams with considerable noise and uncertainties. These data record a vast amount of movement information of people, vehicles, etc., and serve as the backbone of a variety of applications, such as urban traffic management, road network planning, location-based services, and environmental monitoring. While governments, businesses and other organizations have realized the tremendous value of urban spatio-temporal data, how to effectively tap into this potential is still an elusive goal.

    The unifying theme of the project is to address the challenges arising from managing and mining urban spatio-temporal data. Some of the questions we strive to answer are: How to improve the quality of such data to provide a reliable basis for data analytics? How to efficiently process continuous queries (such as k nearest-neighbor queries) and discover patterns over spatio-temporal streams? How to construct a probabilistic model to capture the underlying intention of movement? How to use this model to support advanced applications, such as traffic flow forecasting, dynamic navigation, and next location prediction?

    Novel models and methods developed from this project will help lay the data management and analytics foundation for a wide spectrum of applications, and provide a better understanding of human mobility patterns.

    See more
    Role: Principal Investigator


Current Courses

Term Course Number Section Title Type
Fall 2024 AP/ITEC2610 3.0 A Object-Oriented Programming BLEN


Upcoming Courses

Term Course Number Section Title Type
Winter 2025 GS/ITEC6220 3.0 M Advanced Information Management LECT


I am a Professor and the Graduate Program Director in the School of Information Technology, York University. I received my BSc degree from Nanjing University, China, MPhil from the Chinese University of Hong Kong, and PhD from the University of Toronto. I am affiliated with the graduate programs in Information Systems & Technology, Electrical Engineering & Computer Science, and Mathematics & Statistics at York University.

My current research interests lie primarily at the intersection of data management and machine learning (ML), including designing next-generation ML-based database components for more efficient query processing, as well as developing new algorithms and systems for large-scale ML. I am also interested in managing and analyzing spatio-temporal data arising from a variety of contexts, such as intelligent transporation systems, location-based services, and social networks. I am grateful for the generous support from NSERC, BRAIN Alliance, and leading industry partners. Our research results have been published in top database and data mining venues, such as SIGMOD, VLDB, ICDE, and TKDE.

Degrees

PhD, University of Toronto
MPhil, Chinese University of Hong Kong
BSc, Nanjing University, China

Research Interests

Information Technologies , Big data management and analytics, Database systems, Machine learning

Awards

  • Dean's Award for Excellence in Research - 2009
  • ACM CIKM Service Award - 2014

Current Research Projects

Structured Video Query Processing with Spatiotemporal Constraints

    Summary:

    Fueled by the prevalence of capturing devices such as smartphones and cameras, we have witnessed an explosion of video data over recent decades. According to Cisco, video is expected to make up 82% of Internet traffic by 2022, with approximately 120TB of video data crossing the Internet per second. Such videos contain a wealth of information to be tapped to benefit our productivity, safety, and quality of life. However, they are heavily under-utilized due to the limitations posed by our current way of querying and analyzing videos.

    On the other hand, the vast advances in Deep Learning (DL) in recent years have revolutionized numerous applications of major practical significance, including computer vision tasks such as object detection and object tracking. Integrating real-world applications with DL algorithms and models has become possible; understanding object types (e.g., person, car) and their locations in video frames is within reach by the application of specialized DL models. However, most existing video analytics solutions are purposebuilt and target specific applications; assembling the technical expertise to build and maintain the required
    infrastructure and platform for video analytics that works across applications is still highly challenging, both in research and practice.

    The proposed research program aims to address these challenges by developing solutions that bridge the gap between the need for powerful video analytics and the capability of specific DL models. The longterm objective of the research program is to develop the frameworks, models, algorithms, and systems for general-purpose structured video processing and analytics to unleash (through query processing) the vast potential of video data. As spatiotemporal information contained in videos is key to the processing of queries, the short-term objective is to develop spatiotemporal data structures, algorithms, and models for the processing of structured queries over video data. Advances will be made to address the following research questions: (1) how to retrieve clips from large video repositories with constraints on when and how objects appear; (2) how to quantitatively represent and store the evolving spatial relationships among a group of objects and perform efficient and accurate query processing over such relationships; and (3) how to re-identify the same objects across video clips based on their spatiotemporal association and visual similarities to support cross-video query processing.

    The proposed research will help lay the foundation towards building a general-purpose video analytics system that is highly scalable and capable of performing fine-grained spatiotemporal pattern matching. It will help organizations and individual users uncover valuable information from videos and enable numerous applications in a wide variety of domains, such as video content creation, law enforcement, retail traffic analysis, and autonomous driving.

    Project Type: Funded
    Role: PI

    Start Date:
      Month: May   Year: 2022

    End Date:
      Month: Apr   Year: 2027

    Funders:
    NSERC

    Project Type: Funded
    Funders:
    Minor Research Grant (York University)

    Project Type: Funded
    Funders:
    ATK Fellowship (York University)

    Project Type: Funded
    Funders:
    Minor Research Grant (York University)
Managing and Mining Urban Spatio-Temporal Data

    Summary:

    The wide-spread use of smart phones, sensors and other IoT devices in cities world-wide has given rise to a huge volume of urban spatio-temporal data, which often present themselves as high-velocity continuous streams with considerable noise and uncertainties. These data record a vast amount of movement information of people, vehicles, etc., and serve as the backbone of a variety of applications, such as urban traffic management, road network planning, location-based services, and environmental monitoring. While governments, businesses and other organizations have realized the tremendous value of urban spatio-temporal data, how to effectively tap into this potential is still an elusive goal.

    The unifying theme of the project is to address the challenges arising from managing and mining urban spatio-temporal data. Some of the questions we strive to answer are: How to improve the quality of such data to provide a reliable basis for data analytics? How to efficiently process continuous queries (such as k nearest-neighbor queries) and discover patterns over spatio-temporal streams? How to construct a probabilistic model to capture the underlying intention of movement? How to use this model to support advanced applications, such as traffic flow forecasting, dynamic navigation, and next location prediction?

    Novel models and methods developed from this project will help lay the data management and analytics foundation for a wide spectrum of applications, and provide a better understanding of human mobility patterns.

    Project Type: Funded
    Role: Principal Investigator


Current Courses

Term Course Number Section Title Type
Fall 2024 AP/ITEC2610 3.0 A Object-Oriented Programming BLEN


Upcoming Courses

Term Course Number Section Title Type
Winter 2025 GS/ITEC6220 3.0 M Advanced Information Management LECT